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Negative-Viscosity Lattice Gases 
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A new irreversible collision rule is introduced for lattice-gas automata. The rule 
maximizes the flux of momentum in the direction of the local momentum 
gradient, yielding a negative shear viscosity. Numerical results in 2D show that 
the negative viscosity leads to the spontaneous ordering of the velocity field, 
with vorticity resolvable down to one lattice-link length. The new rule may be 
used in conjunction with previously proposed collision rules to yield a positive 
shear viscosity lower than the previous rules provide. In particular, Poiseuille 
flow tests demonstrate a decrease in viscosity by more than a factor of 2. 
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1. I N T R O D U C T I O N  

Scientists studying turbulence in fluid dynamics have often turned to com- 
puter simulations for insight not readily attainable by analytic theories or 
laboratory experiments. Simulations of turbulence have remain limited, 
however: current capabilities allow computations of flows at Reynolds 
numbers that are only a fraction of those realized in nature. 

Motivated in part by the realization of these issues, Frisch, 
Hasslacher, and Pomeau (FHP) (1) recently introduced lattice-gas automata 
for the numerical solution of the incompressible Navier-Stokes equations. 
The lattice gas is a discrete model of a fluid in which identical particles of 
equal mass populate a regular lattice, obey simple collision rules, and 
travel to neighboring sites at each time step. Although this discrete model 
captures only the gross characteristics of true molecular dynamics, the 
macroscopic behavior of the gas is currently understood to be very close to 
the Navier-Stokes equations. ~2-4~ 
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So that turbulence may be simulated efficiently by lattice gases, con- 
siderable effort has been devoted to the search for collision rules that yield 
the smallest possible viscosity and therefore the largest possible Reynolds 
number. Rule optimization has been pioneered by H6non. ~5 7~ As he points 
out, when the simple 2D FHP gas is implemented with collisions that 
satisfy reversibility (more precisely, "semi-detailed balance"), the rules 
which minimize viscosity are straightforward to find. However, for 3D 
lattice gases ~sl the overhelming number of possible collisions makes 
finding the optimal reversible rules considerably more subtle. H6non has 
therefore created a general scheme for optimization, the results of which 
have been successfully applied in ref. 9. 

Here I adopt an alternative approach to the minimization of viscosity. 
The collisions of this new model are irreversible and depend on the local, 
microscopic momentum gradient. Simply stated, collisions occur such that 
they results in the maximum possible flux of momentum in the direction 
of the momentum gradient. This behavior is, of course, contrary to the 
classical view of molecular viscosity as a mechanism which acts to diffuse 
momentum. Consequently, the model has as a possible outcome the 
appearance of a nonphysical negative viscosity. Importantly, the new, 
negative-viscosity collision rules may be statistically mixed with the old, 
positive-viscosity rules to yield a positive viscosity which is smaller than 
that obtained from previously published schemes. As an example, I present 
a numerical result demonstrating a decrease in viscosity by more than a 
factor of 2 for a 2D model. 

2. THE RULE 

The negative-viscosity collision rule is essentially a generalization of 
the rule used in ref. 10 to model surface tension in a fluid composed of two 
components, say, a "red" phase and a "blue" phase. In that model, colli- 
sions are designed to maximize the flux of color in the direction of the 
color gradient. For certain choices of parameters, the red phase separates 
from the blue phase, and surface tension is found at the interfaces. The 
mechanism for phase separation arises because the diffusivity of the 
minority phase in a mixture is negative, as has been confirmed by both 
theoretical prediction and numerical simulation. ~ 

The negative-viscosity rule is a tensorial extension of the two-phase 
rule: instead of directing the flux of color up the color gradient in a two- 
phase fluid, the new rule directs the flux of momentum up the momentum 
gradient in a single-phase fluid. Thus, the diffusivity of momentum--the 
kinematic viscosity---can be negative. 

I use the 2D FHP hexagonal lattice gas as an example (generalization 
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to 3D is straightforward). The moving-particle velocities at a site are num- 
bered from 1 to 6, with ej = (cos(2~j/6), sin(2~j/6)). A fixed number m of 
identical but distinguishable rest particles is also allowed at each site; thus, 
C6+k =0 ,  k = l  ..... m. 

The configuration at a site where a collision occurs is denoted by 
n = {ni}, 1 ~< i ~< 6 + m, where ni = 1 if the ith velocity cell is occupied, and 
0 if it is not. The configuraltion at the nearest-neighbor site in direction ej 
is denoted by # =  {nj}. The momentum-gradient tensor G ~  is then 
defined as 

�89 ej 2 (1) 
j i 

where Greek letters represent vector or tensor indices and Roman letters 
indicate particle velocities. Note that G~  is just the discrete analog of 
~?~(pu~), the momentum gradient in a continuum fluid. 

The ith velocity cell's contribution to the flux of c~ momentum in the 
fl direction (or vice versa) is n~e~e~. The sum of the flux of each compo- 
nent of momentum in the direction of that component's gradient is thus 
n~e~e~G~B (summation over repeated Greek indices is assumed). The sim- 
plest model of a negative viscosity is then one in which the collision rule 
n ~ n' is such that the sum over the gradient-directed momentum fluxes, 

n;ci~ci~G~ (2) 
i 

is maximum, subject to the contraints of mass and momentum conserva- 
tion. 

Such a scheme indeed produces the desired results. However, collisions 
directed up the gradient G~ maximize not only shear, but also compres- 
sion (or dilatation) as well. Since only the shear viscosity is of interest, I 
use instead the traceless momentum gradient 

i 1 G~ = G ~ -  ~ G~, (3) 

which is the same form used in classical derivation of the shear viscosity. (13) 
The momentum flux of interest is then given by 

F(n) = ~ niei~ei~G'~ (4) 
i 

The result of a collision is determined by solving 

F(n')=maxF(n") (5) 
n "  
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subject to the constraints of mass conservation, 

~ n ; ' = ~ n i  (6) 
i i 

and momentum copnservation, 

~. ein;' = ~. cini (7) 
i i 

Equations (5)-(7) thus constitute the negative-viscosity rule. If more than 
one n' satisfies these equations, then the outcome of a collision is chosen 
randomly from the set of all possible solutions. After the collisions have 
occurred, each particle n; advances with velocity e i. 

Several remarks are now appropriate. First, note that the second term 
on the right-hand side of Eq. (3) may affect the solution of Eq. (5) only via 
the creation or destruction of rest particles. Accordingly, I have chosen to 
use an 8-bit model with rn = 2 rest particles per site. Second, note that, 
although the elements of G~  may change upon rotation of the coordinate 
axes, the rule given by equations (5)-(7) is statistically isotropic. To imple- 
ment this rule, I have found it sufficient to simply compute the sign of each 
element of G~.  These four terms, together with a number specifying the 
mass and momentum invariants, are then input to a table that gives the 
outcome of a collision. 

3. N U M E R I C A L  E X P E R I M E N T S  

3.1. U n f o r c e d  F l o w  

Figure 1 illustrates a typical result with the 8-bit negative-viscosity 
model. There is an average of 3.2 particles per site on a 32 x 32 lattice. The 
initial condition was a net momentum of zero at each lattice site, and thus 
zero momentum in total; the boundaries are periodic in both directions. 
No forces have been applied. The flow vectors represent the momentum 
flux at each site averaged over 25 time steps beginning at time step 2000. 
(The flow is indeed unsteady, but only at a time scale much slower than 
one time step.) No spatial averaging has been performed. 

The result is a strongly unstable fluid, with structure in the momentum 
field at the smallest possible scale. Because collisions seek to either main- 
tain or enhance gradients in momentum, the "equilibrium" flow field is one 
in which the momentum has nearly separated in space; i.e., while the total 
momentum remains zero, about half the fluid is moving quickly in one 
direction at the same time the other half is moving quickly in the opposite 
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Fig. 1. Momentum flux in the negative-viscosity lattice gas, illustrated after 2000 time steps. 
Each vector represents the flux of momentum at a single site, averaged over 25 time steps. The 
initial condition was zero momentum at each site. Boundaries are periodic in both directions. 

direction. This separation of momentum,  which produces order in the flux 
field, is the vector-field analog of the separation of mass in the two-phase 
model of ref. 10. 

If a negative viscosity were to exist in nature, velocity gradients would 
increase without bound. Such behavior is impossible in a lattice gas 
because the particle velocities are at most  one lattice unit per time step. 
The ability to obtain such a highly resolved picture of the momentum flux 
by averaging each site over only 25 time steps is probably due to the 
spatial correlation in velocity induced by the negative viscosity. 

3.2. Poiseui l le  F l o w  

As mentioned in the introduction, the negative-viscosity rules can be 
statistically mixed with conventional collision rules to obtain a smaller 
positive viscosity and thus typical hydrodynamic behavior. I choose as the 
"conventional" rules collisions that choose randomly from the set of con- 
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Fig. 2. The results of simulations of Poiseuille flow, compared to the theoretical profile 
predicted by Eq. (8). The negative-viscosity rules were used with probability p=0.45. The 
measured viscosity is less than half that of the corresponding collision-saturated model where 
p=0. Error bars represent one standard deviation from the average of 10 independent 
simulations performed over l0 s time steps each. 

figurations that  conserve mass and momentum,  and, if possible, result in an 
output  configurat ion not  equal to the input configuration. (These rules are 
similar to model  I I I  of ref. 12.) The negative-viscosity rule then occurs with 
probabil i ty p, while the other rule occurs with probabil i ty 1 -  p. 

The gross features of such a scheme are well-tested by simulating 
Poiseuille flow in a channel. S tandard  theory (e.g., ref. 13) predicts that  the 
velocity profile is the parabola  given by 

0p  R 2 - -  x 2 

u~(x)- @ 2# (8) 

where # is the dynamic  shear viscosity, @ / @  is the pressure gradient, and 
the channel walls are taken at x = +R.  To measure the viscosity, I used the 
square-wave forcing technique of ref. 14 on a 32 x 64 lattice. 2 

Figure 2 shows the velocity profile obtained with p = 0.45 and an 
average of 3.2 particles per site. Ten simulations with different initial condi- 
tions were performed. The data  points were obtained by comput ing  the 
average y velocity at each x location during each time step, averaging these 
points over l0 s time steps, and finally taking the mean of  the velocity 
profiles obtained in the 10 simulations. The error  bars represent one 

2 Due to coding complications, the clever "M6bius-strip" boundary conditions of ref. 14 could 
not  be used. The square-wave force was thus explicitly modeled with half the lattice forced 
in the positive y direction, and the other half forced in the other direction. After accounting 
for sign differences, the profiles in the two channels were then averaged. 
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standard deviation in the final average of 10 points. The data are compared 
to the parabolic profile predicted by Eq. (8), where /~ was obtained from 
the average flow rate. The computed value of the dynamic viscosity is 
# = 0.198 • 0.004 (the kinematic viscosity v = 0.0536 + 0.0012). In contrast, 
a similar test without the negative-viscosity rule ( p = 0 )  yields 
/~ = 0.431 • 0.006 (v = 0.117 • 0.002), greater by a factor of 2.2. 

Hydrodynamic behavior at viscosities significantly lower than that 
reported here proved difficult to obtain. Further numerical experiments 
showed that the viscosity goes negative for p greater than about 0.6. 

4. D I S C U S S I O N  A N D  C O N C L U S I O N S  

This study has demonstrated two key points. First, lattice-gas collision 
rules can be designed to yield a negative viscosity. Second, these new rules 
can be implemented in such a way as to obtain positive viscosities that are 
lower than previous rules have provided. Poiseuille flow tests show a 
decrease in viscosity by more than a factor of 2. 

Although this investigation has been purposely phenomenological, 
analytic study of such a collision rule is possible. It is shown in ref. 11 how 
a discrete Boltzmann equation may be solved to predict the conditions 
under which the diffusivity of color goes negative in the two-phase model 
of ref. 10. Much the same analysis may be performed here to predict where 
the viscosity changes sign. Further analysis similar to that described in 
ref. 15 should also be done to ascertain the affects of the loss of semi- 
detailed balance. 

Finally, a practical limitation is worth noting. If a positive viscosity 
were so small that the dissipation scale were less than a lattice-link length, 
the hydrodynamic limit of the lattice gas may no longer hold. Instead, one 
would expect a "grid viscosity" to result from the lattice discretization. 
Thus, beyond a certain limit in viscosity, increasing the length scale of a 
simulation may be the only way to increase the Reynolds number. 
Nevertheless, this new ability to decrease viscosity brings lattice-gas simula- 
tions significantly closer to modeling turbulence. 
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NOTE A D D E D  IN PROOF 

After the conclusion of this work, Dubrulle, Frisch, ,H6non, and Rivet 
1-16] reported results with an irreversible three-dimensional lattice gas 
model for which a Boltzmann approximation predicts a negative viscosity. 
Results of simulations, however, do not exhibit a negative viscosity. 
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